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1. Motivations

A central theme in the black hole information puzzle is the problem of low-energy scat-

tering for ordinary quanta by an extremal black hole with a subsequent absorption and

Hawking reemission. From a semi-classical point of view the final radiation turns to be an

exact black body [1, 2]. It has been argued, but not demostrated, that departures from

thermal emission could explain black hole evaporation without lost of information and

hence reconcile quantum mechanics with general relativity. In most of the approaches in

the literature the role of the black hole is similar to that of a soliton in field theory, being

gravity treated as a non-perturbative field to be added to the game once the spectrum and

quantization rules to the particle-like objects have been put down by quantum mechanic

rules. Although this view must suffice in a semi-classical picture it can be inappropriate

when one probes Planck scales.

One successful approach that overcomes partially this problem, incorporates the self-

gravitation interaction in the radiation process [3]. The underlying idea in this model is

extremely simple: the full hole-particle system is reduced to an effective one-dimensional

system and for that purpose all the degrees of freedom are truncated to 2d. In particular

the model for emission/absorption is still only suitable for regions of low-curvature and

exclusively tackles the s-wave part of the short-wavelenghts radiation. This fact allows us

to employ the WKB approximation that makes any calculation almost straightforward. All

the studies pursued within the mentioned approach reveal so far that Hawking radiation

is not purely thermal. These results, although encoraging to explain the Hawking effect,
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are distressing and it is not clear the ultimate reason that allows all the holes to have a

non-thermal emission independently of their nature. Our aim is to present, some features

of the semi-classical geometry and Hawking radiation in a family of black holes with strict

thermal emission even if back-reaction effects are taken into account.

We shall begin by outlining the most salient features of a simpler related model, Little

String Theory (LST), that is at the main core of the study. Many of the points that will

arise here are implicitly given in other works. Next we present the emission probability

via tunneling in this model, explaining some details of the formalism. As a next step we

elucidate a plausible “dynamics” that rides a NS5 setup towards its Hagedorn temperature

and study the spectrum of the emission. As we shall see, as temperature is increased in

this process, the spectrum, initially non-thermal, goes to a thermal one.

To stress that the thermal emission is not something peculiar of this metric space,

but most probably a feature of a full family of spaces [4], we also worked out a model

in which ultraviolet completion reduces to the previous one. In that sense, one does not

expect to obtain the very similar result as previously for the decay width, because the

emission/absorption process is produced near the horizon and must be insensible to the

behaviour of the radial asymptotic in the metric. As we shall see this does not turn out to

be the case.

To conclude, we add a few remarks on the information lost and on higher order cor-

rections near the Planck scale.

2. Little string theory, thermodynamics overview

The model we are studying is constructed by considering N coincident NS5-branes in type

II string theory in the limit of a vanishing asymptotic value for the string coupling gs → 0

and a fixed string mass ms. Under these constraints the theory becomes free in the bulk

but strongly interacting on the brane, while modes interacting between the bulk and the

brane are decoupled. This setup defines a non-gravitational six-dimensional field theory [5].

In that precise limit the theory reduces to LST, or more precisely to (2, 0) LST for type

IIA NS5-branes and (1, 1) LST for type IIB NS5-branes [6].

We shall consider the non-extremal case, from where we shall deduce the thermody-

namic properties of the black hole. Even if the Hawking’s area theorem applies in Einstein

frame, where the weak energy condition is satisfied [7], we have cross-checked that all our

claims concerning the semi-classical emission can also be obtained from the String frame

where from simplicity we stick henceforth. The classical throat geometry corresponding to

N coincident non-extremal NS5 branes is described by [8],

ds2 = −F (r)dx2
1 +

6
∑

j=2

dx2
j +

N

m2
sr

2

(

dr2

F (r)
+ r2dΩ2

3

)

, F (r) = 1 − r20
r2
, (2.1)

where the dilaton field is given by e2φ = N
m2

sr2 . The boundary of the near horizon geometry

is R5 × S1 × S3 and only reduces to R5 after Kaluza-Klein reduction on the S1 and S3

spheres.
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The extremal configuration is obtained by identifying F (r) → 1 in (2.1). This rep-

resents a five-brane which world-volumen can be identified with R6. In addition to the

previous fields one finds a NS-NS H(3) form along the S3, H(3) = 2Ncǫ3. The geome-

try (2.1) is regular as long as r0 → 0. When r approaches r0, appears a semi-infinite

“throat” parametrized by the (x1, r) coordinates. The dilaton field grows linearly in this

region, pointing out that gravity becomes strongly coupled far down the throat. As we

shall see in this geometry there are null infinities, since light rays can travel forever down

this throat.

From the point of view of the black hole thermodynamics, the thermal states are

constructed by periodically identifying the imaginary time coordinate x1 with a period

β0 =
2π

√
N

ms
. (2.2)

Notice that this value is independent of the black hole radius, that is fixed even if

many particles impinge on the black hole. This results holds at all orders in α′ corrections,

but receives modifications from higher genus [9, 10]. Furthermore, eq. (2.2) gives the onset

for the characteristic time scale, the so-called Hawking time τH, in which the black hole is

formed τH =
√
N/ (2ms). These thermodynamic states will be in thermal equilibrium in

the static coordinate system (2.1) with a locally measured temperature

Tloc(r) =
1

β0

√

F (r)
. (2.3)

The local temperature is blue-shifted by the gravitational potential and increases as

(r − r0)
−1/2 for r → r0. An asymptotic observer will identify its observed temperature

with that in (2.2), Tloc(r → ∞) = β−1
0 . Thus although the black hole has a natural, fixed,

temperature associated with it, in this case the locally measured temperature decreases,

up to β−1
0 , the further one is from the black hole.

It has been argued, [11], that the energy, entropy and temperature of a CFT at high

temperatures can be identify with the mass, entropy and Hawking temperature of the dual

black hole and in the sequel we shall make use of these relations. The Euclidean action

for a LST black hole solution gives a vanishing contribution to the Helmholtz free energy

logZ = −I = 0, with Z been the string partition function. In that precise case the entropy

and energy density are directly proportional to each other,

s = β0e =
π2

2

√
Nr20 , (2.4)

and the Bekenstein-Hawking entropy-area relation is fulfilled. This behaviour suggest that

at leading order the Hagedorn density of states at very high energy grows as ρ(E) ∼
exp (β0E) [12]. As a consequence the energy of strings near the Hagedorn temperature is

dominated by the oscillating mode energy, i.e. the mass energy of a single string.

– 3 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
0

3. Hawking emission via tunneling

We give in this section a somewhat detailed derivation for the obtention of the Hawking

radiation. In the subsequent sections, section 4 and 7, we shall take the same approach

but omitting details and commenting directly on the results.

Following [13] we consider the emission of a S-wave massless scalar particle in the

radial direction of (2.1). This will allow to use Birkhoff’s theorem and decouple gravity

from matter. In order to find the Hawking emission we bring the length element (2.1) to a

smooth form near the horizon using a Painlevé-like transformation x1 → x̂1+f(r), which is

nothing more than the proper time along the radial geodesic worldline [14]. This form will

be more suitable to study across-horizon physics, for instance, the tunneling of massless

shells. In doing so, we consider a transformation with the property that at a constant time

slice matches the geometry of LST space without a black hole immersion

ds2 =
6
∑

j=2

dx2
j +N

(

dr2

r2
+ dΩ2

3

)

. (3.1)

This is acomplished by choosing

f(r) = −
√
N arctanh

(

r

r0

)

, (3.2)

which allows to rewrite (2.1) as

ds2 = −F (r)dx̂2
1 +

6
∑

j=2

dx2
j − 2

√
N
r0
r2
drdx̂1 +

N

r2
(

dr2 + r2dΩ2
3

)

. (3.3)

The function (3.2) is time independent and as a consequence (3.3) remains stationary as

was already the case for (2.1).

Describing the black hole emission we rely on the notion of virtual pair creation just

around the horizon [15]. Loosely speaking, if the pair is created inside the horizon the

positive energy particle tunnels out while the antiparticle is absorbed by the black hole

which horizon recesses. Alternatively the pair can be created just outside the horizon, in

that case is the antiparticle which tunnels throught the horizon, shrinking once more the

size of the black hole while the particle escapes. In any of the cases the quantum state

of the outside particle is not a pure state, and it is possible to compute the entanglement

entropy between the particles that fall into the hole with those that escape to infinity.

This intuitive picture contains some drawbacks, the main one being the lack of under-

standing on the origin of the source for the potential barrier to tunnel across. The approach

devised in [13, 16] overcome this by noticing that when a virtual pair of particles is created

is the self-gravitating field of the emitted particle the source for the potential barrier to

tunnel across the horizon. In addition one has to take into account the energy conservation

in the process: the ADM mass remains fixed while the black hole mass decreases when

the quanta is emitted. This backreaction deforms the initial metric and is implemented

in (2.1) by shifting the black hole mass appearing in the wrapping factors, M ∼ r20. To be
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concrete, once the shell is emitted the correct wrap factor would be proportional to M −ω,

with ω been the energy released in the emission. This would correspond to a new, lower

value for the radius r1.

For an observer located at the radial infinity of (2.1), an object approaching r0 is in-

finitely blueshifted. This allows to apply a semi-classical treatment to the particle emission

problem and with an extend to use the classical action, in the smooth coordinates (3.3), to

describe the wave function Ψ(r) ∼ eiSclass . Keeping it in mind we evaluate the rate emission

for massless particles in the sequel.

The metric (2.1) is stationary and the lagrangean density derived from it fulfills the

simple relation H = −2L with the hamiltonian density. For a dynamics considering only

the radial coordinate the expression L = −ṙpr holds and the classical action reads as

S =

∫ rout

rin

prdr =

∫ rout

rin

∫ M−ω

M

dH

ṙ
dr = −

∫ ω

0
dω

∫ rout

rin

dr

ṙ
, (3.4)

being ω the maximum energy released in the shell. To obtain (3.4) we have applied Hamil-

ton’s equation, defined ṙ := dr/dx̂1 and pulls out factors that do not contribute to the

imaginary part of the action. Inherently the expression (3.4) is obtained in the semi-

classical regimen, i.e. the emitted shell must be a probe, ω ≪ M. This also is justified

because for large holes masses, much larger than Planck mass, the only relevant field con-

figurations taken into account by the WKB approximation are short wavelength solutions

in a relative low curvature region. This in addition overcomes the ill-defined extremal

limit [17].

For the geometry (3.3) the radial light-like geodesic are orthogonal to the surfaces of

constant time on which r measures the radial proper distance and is given by

ṙ =
1√
N

(r ± r0) , (3.5)

where the plus (minus) sign corresponds to the geodesics rays going towards (away from)

the observer. Its general solution is r = r0

(

ex̂1/
√

N ± 1
)

. As mentioned in section 2 any

radial light-like emission reach future null infinity at x̂1 → ∞. While a light-like emission

leaving the observer at x̂1 = 0 reach the horizon at x̂1 = ln 2/
√
N , thus eventually as one

increases the number of NS5-branes the traveling time gets reduced.

Using the Feynman prescription +iǫ to displace the pole, the imaginary part of (3.4)

reads ImS = π
√
Nω . One does not fail to notice that: i) this result is independent of the

black hole radius and ii) that no infinities arise in this calculation, so is mathematically well

defined without any need for regularization. The previous relation, together with (2.2),

leads to the rate emission

Γ ∼ |Ψ(r)|2 ∼ e−β0ω . (3.6)

The exponent contains the difference between the actions of the higher and lower black

hole mass evaluated at the same and unique temperature for the system. The emission (3.6)

follows a black body distribution and hence the LST black hole radiation is pure thermal.

The consequences of (3.6) are: i) first of all that all the corresponding states in the

dual CFT must be a priori equally weighted. ii) Secondly, one can convince oneself that
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cluster decomposition applies and as a result the quantum state of Hawking radiation does

not depend on the initial state of the collapsing body. In addition this fact implies that the

probability of emission of a shell of energy ω1 + ω2 is equal to the probability of emitting

independently two shells with the same total amount of energy.

As the radiation comes always as a pure state, the Hilbert space can be factorized into

two disjoint parts, H = Hin ⊕ Hout, which correspond to states located at the inner and

outer sides of the event horizon respectively. It will follow from the superposition principle

that the state inside the horizon must be a unique state carrying no information at all.

Summing up, this can be expressed in a somewhat muted fashion as: the black hole at the

hagedorn temperature does not interact with its environment and hence we can represent

a state of the entire space as |ψ(t)〉 = |ψin(t)〉 ⊗ |ψout(t)〉.
Momentally we made a digression of our main stream and comment on the validity of

the truncation of (2.1) to 2-dimensions. The interesting points concern: i) the fate of di-

mensional and field content reduction on the S3 modes is consistent [18]. ii) Furthermore,

both the R5 and S3 wrap factors are independent of the (x̂1, r) coordinates. As a conse-

quence the equation of motions of these modes can be taken static and r independent, i.e.

the emission in the x̂1 − r plane does not alter the dynamics in the transverse coordinates

to it.

4. Locking information at the Hagedorn temperature

It is intuitively clear from the very beginning that the result (3.6) must be the correct

behaviour for the LST system in the semi-classical approach since in this type of holes the

temperature is not related with its mass. It is precisely this fact which encodes the ultimate

reason for the non-thermal behaviour in the model of [13]. To make this point more clear

if instead of using the field content of LST we retain the full asymptotic, ten-dimensional

CHS background [19]

ds2 = −F (r)dx2
1 +

6
∑

j=2

dx2
j +A(r)

(

dr2

F (r)
+ r2dΩ2

3

)

, A(r) = κ+
N

m2
sr

2
, (4.1)

and dilaton e2φ = κ+ N
m2

sr2 , (κ ≡ 1) , one sees that the temperature depends on the black

hole mass [20]. In this case the Hawking temperature can be determined by the surface

gravity method at the event horizon and is given by

βCHS = β0

√

1 + κr20/N , (4.2)

notice that it provides an infra-red cutoff for the radial coordinate. We have used κ as

an eventual continuos variable that parameterizes the geometry (4.1). By no means, one

should understand that all the intermediate values correspond to supergravity solutions.

Its utility is twofold, first the near horizon limit is recovered setting κ = 0. And second

it will also control the temperature; for instance, κ → 0 increases the temperature to the

Hagedorn one. The basic tenant is that (4.2) relates the temperature with the size of the

hole, thus as the hole emits, not only the radius shrinks but also the temperature increases.
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This fact relates the emission with the thermodynamic properties of the hole and contrary

to the previous situation we expect that the radiation provides information on the black

hole state.

As previously seen, the geometry at the horizon can be brought to a smooth form with

a Painlevé-like change of coordinates

x1 → x̂1 − r
√

A(r)−κF (r)arctanh

(

r

r0

√

1−κF (r)

A(r)

)

+ r0
√

A(r) log
[

2r
(√

κ+
√

A(r)
)]

.

(4.3)

After using (4.3) the metric field (4.1) is reduced to

ds2 = −F (r)dx̂2
1 +

6
∑

j=2

dx2
j − 2

√

A(r)
r0
r
dx̂1dr +A(r)

(

dr2 + r2dΩ2
3

)

. (4.4)

A calculation similar to (3.4) leads to the probability for a CHS black hole of mass M to

emit a shell of energy ω

Γ ∼ exp

(

−2π
√
N +Mκ ω +

κω2

4
√
N +Mκ

+ · · ·
)

, (4.5)

where the ellipsis stand for terms proportional to higher powers of κ. Now for κ→ 1 (4.5)

is clearly non-thermal while for κ→ 0 we recover once more the thermal emission (3.6). In

view of this fact, it seems wholly tenable that, as the temperature is increased the system

evolves from non-thermal to thermal. As a consequence an asymptotic observer could con-

jecture that the black hole internal degrees of freedom are reduced during the evaporation

process and eventually one remains with a single state. The very same conclusions can be

traced back from a stringy point of view if one considers the strings as the fundamental

degrees of freedom of the black hole. In a flimsy language: as one approaches the Hagedorn

temperature strings condense leaving a residual single state that contains no information at

all [21]. To substantiate this point we have computed, in the spirit of [22], some properties

of a classical string located at the stretched horizon, i.e. a time-like curve slightly outside

the global event horizon, that is of relevance in describing the evaporation process. We

expect that for sufficiently large black hole masses both, the proper distance between the

stretched and the event horizon, ∼
∫ s.h.
e.h. dr

√
grr, together with the local Unruh tempera-

ture, (2.3), are ballpark of the Planck order (up to a numerical factor of order 1). This

fact imposes that the stretched horizon must be almost coincident with the event horizon,

rp ≈ r0 +δ for some positive and infinitesimal constant δ. Using (2.3) at the Planck radius

and the Planck temperature behaviour, Tp ∼ G−1/2, we obtain

δ ≈ G
√
GM

β2
0 + 4GMκ

, (4.6)

where we have momentally reinstated the Newton constant G in the proper space-time

dimension.

For the CHS model δ ∼
√

G/M , thus for large black hole masses one can consider that

the stretched horizon is almost on top of the event horizon. As we increase the temperature
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the distance δ also increases until δ ∼ G
√
GM/β2

0 at the Hagedorn temperature. At this

point, the stretched horizon is displaced towards the distant observer and swallows up all

the space, provided we ensure the validity of the supergravity approximation

M ∼ r20 ≫ N ≫ 1 . (4.7)

In the CHS model all the thermodynamic quantities on the stretched horizon can be

identified as those of the event horizon, with additional subleading terms suppressed by

the hole mass. This is in contrast with the outcome at the Hagedorn temperature where

subleading contributions are not longer suppressed.

Let us continue examining the classical behaviour of the stretched horizon and vi-

sualize the “number of states”. For that purpose we calculate, in the 2-dimensional flat

Minkowsky space, the mass of a ring shaped string located between the boundary at the

Planck temperature, Tp, and the event horizon. It reads

m =

∫

√
GM+δ

√
GM

2πrρp dr ≈







1
GM , if κ = 1;

M
β2
0

+ O
(

GM
β4
0

)

, if κ = 0
(4.8)

where we have used the behaviour ρp ∼ G−2. Notice that (4.8) matches the speculations

below (4.5): for the background (4.1) the string mass can be considered residual and in

accordance the black hole mass remains to be almost ∼ GM . Furthermore, the whole mass

is localized inside the event horizon. As we increase the temperature, the mass of the string

forming a ring of radius rp is of the order of the black hole mass and hence there must be

only a residual mass inside of the event horizon. With the expectation of a small distortion

w.r.t. the flat Minkowsky space the approach of (4.8) is fully justified in this latter case.

One can regard this phenomenon as a progressive melting of the strings as they encounter

Hagedorn temperature conditions [23]. The energy of the strings states is so large when

the Hagedorn temperature is approached, that strings on the horizon will tend to join

forming a single one [24]. Thus the system evolves to a single state and consequently the

entropy is reduced. This picture matches the view where black hole states at the Hagedorn

temperature are in one to one correspondence with single string states.

5. Validity of the semi-classical approach

The previous analyses are based on a semi-classical approach, and even if in top of them one

can implement some extra quantum corrections, the approach is not free of assumptions

and possible controversy. For instance, an observable effect of string theory is the very last

steps in the black hole evaporation. In the usual picture the final evaporation process takes

place at planckian temperatures and thus the last radiated particles would carry energy of

order of the Planck scale. One wonders if at this energies the approach of section 3 is still

reliable. If it does, energy conservation imposes a constrain in the minimum size of the

remnant, since the energy of the emitted particles can not exceed the remainder mass.
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Common lore assigns to the previous optical approximation treatment a validity mean-

while the wavelength of the bulk probe is much smaller than the local curvature of spacetime

1

momentum scale
≪ local curvature length scale . (5.1)

In terms of local coordinates, the curvature length scale, ∆r, can be written as a

function of the scalar curvature as ∆r = 1/
(

grr

√
R
)

. This function is bounded from

below with a single minimum located at r ≈ r0/2, and then (5.1) leads to P ≫ 2/r0.

As the black hole emits and shrinks, the momenta of the space-like geodesics probe must

increase to fulfill the inequality (5.1). At some point the mass of the emitted probe may be

larger than the remaining mass in the hole and the semi-classical approach breaks down.

Considering the behaviour of the radial momenta pr ∼ p0grr ṙ = ω
√

N+κr2

r−r0
as a function

of the emitted particle energy, we can see that inequality (5.1) leads to

ω ≫
√

2N(3Nr2 + r20(2N + 5κr2)

r(r − r0)(N + κr2)
. (5.2)

Notice that a particle near the horizon needs a large amount of energy in order to escape

up to the boundary.

6. Further thermodynamic relations

One should keep in mind that any observable quantity is computed in the boundary and

receives contributions from both supergravity solutions (2.1) and (4.1). Usually in a given

thermodynamic regimen one solution dominates over the other and most of the bulk of the

physical quantity can be computed by considering only one of them. We shall see in the

sequel that this is not the case for these models.

The basic thermodynamic quantity at play is the Helmholtz free energy, that can be

casted in terms of the action via the relation F = I/β. The action consists of two terms

I = Igrav + Isurf . (6.1)

The former given by

Igrav =
1

2κ2
10

∫

M
d10x

√
g

(

R− 1

2
∂µφ∂

µφ− 1

12
e−φH2

(3)

)

, (6.2)

being M a ten-volume. And the latter being the surface contribution

Isurf =
1

κ2
10

∮

Σ
KdΣ , (6.3)

with Σ the boundary that encloses the ten-volume M in (6.2). K is the extrinsic curvature,

Kµν = nσ∂σgµν and nσ∂σ the outward directed unit normal vector.

If one calculates directly the action (6.1) for the solution (4.1) the result turns to

be divergent. To regularize the solution we use an ultraviolet cuttof Λ that eventually

will tend to infinity. Furthermore, we perform a fiducial renormalization, subtracting a
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reference background. It seems natural to choose the latter as the corresponding extremal

solution. The calculation is lengthly but straightforward: the on-shell Euclidean actions of

the extremal and non-extremal solutions are given by

Ie =
Vol(R5)Vol(S3)

2κ2
10

∫ β′

0
dt

[

3

2
Λ2

(

3N + 4Λ2κ

N + Λ2κ

)

−
∫ Λ

0
dr

N2r

(N + r2κ)2

]

, (6.4)

and

Ine =
Vol(R5)Vol(S3)

2κ2
10

∫ βCHS(Λ)

0
dt

[

N(9r2 − 5r20) + 4κr2(3r2 − 2r20)

2(N + r2κ)
−
∫ Λ

r0

dr
Nr(N − κr20)

(N + r2κ)2

]

(6.5)

respectively. In the boundary, Λ → ∞, the temperature of both solutions must be the

same. For this purpose the temporal period in the extremal case is adjusted to be β′ =

βCHS(Λ)
√

F (Λ) .

For fixed, but otherwise arbitrary N and r0, we find the renormalized action

I = lim
Λ→∞

[Ine − Ie]

= lim
Λ→∞

1

4κ2
10

Vol(R5)(2π)3

(N + κΛ2)3/2

(

−2Λ(2N + 3κΛ2)(N + κr20)
√

Λ2 − r20+

+ N2(4Λ2 − 2r20) + 2κ2Λ2(3Λ2 − 2r20)r
2
0 +Nκ(6Λ4 + Λ2r20 − 3r40)

)

→ 0 (6.6)

implying that the free energy of the system vanishes. This means that none of the actions

dominate over the other, and to obtain an observable one has to add the contributions of

both actions.

It is also instructive to compute in an independent way some of the thermodynamic

contributions to the Helmholtz free energy, F = E − TS = 0. For instance, the entropy

behaves as

S =
Area

4G10
=

1

2G10
Vol(R5)π2r20

√

N + κr20 =
1

4G10
Vol(R5)πr20βCHS , (6.7)

and turns to be κ dependent, but the combination entering in the Helmholtz free energy

it is not

TCHSS =
1

4G10
Vol(R5)πr20 = TLSTS . (6.8)

Notice that (6.7) matches the behaviour described by (4.8): as κ → 0 the black hole dof,

strings, joint together up to forming a single state. As a consequence the entropy decreases.

We just end this section by noticing that the exponent in (3.6), the entropy radiation,

is just the variation of the Bekenstein-Hawking entropy. In this precise case the mass and

entropy density are given in (2.4) from where it follows that e−β0ω = e∆SBH . This matches

the statistical picture in which large fluctuations are suppressed and supports the idea

that in this background the Bekenstein-Hawking area-entropy relation, SBH = A/4, can

be obtained by counting the degeneracy states [25].
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7. Hawking emission via tunneling: wrapped fivebranes

The metric (2.1) is the ultraviolet completion of a large family group of regular non-abelian

monopole solutions in N = 4 gauged supergravity, interpreted as 5-branes wrapped on a

shrinking S2 [4]. In the following we shall deal with a thermal deformation of one of

such metrics dual to N = 1 SQCD with a superpotential coupled to adjoint matter [26].

Analyzing the emission problem with the method outlined in section 3 leads to the same

result obtained in (2.2), i.e. a constant outward flux of particles independent of the black

hole characteristics. The metric field in Einstein frame is given by

ds2 = e
φ0

2 r

[

−K(r)dx2
1 +

4
∑

j=2

dx2
j + +Nα′

(

4

r2K(r)
dr2 +

1

ξ
dΩ2

2 +
1

4 − ξ
dΩ̃2

2

)

+
Nα′

4

(

dψ + cos θdϕ+ cos θ̃dϕ̃
)2
]

, (7.1)

K(r) = 1 −
(r0
r

)4
. (7.2)

In addition we have a dilaton field which is linear φ = φ0 + r and a RR 3-form field.

First of all we truncate the theory to two dimensions, the radial and temporal one.

As previously none of the others play any role in the emission. To cast (7.1) in Painlevé

coordinates we chose the function f(r) in (3.2) as f(r) =
√
N logK(r) . Then the truncated

theory equivalent to (7.1) is rewritten as

ds2 = e
φ0

2 r

(

−K(r)dx2
1 + 4Nα′ dr2

r2K(r)
− 4

√
Nα′ r

2
0

r3
dx1dt

)

. (7.3)

To calculate the semi-classical emission one needs the radial null geodesics of the back-

reacted metric. Like the mass scales as M ∼ r40 the emission of a shell with energy

ω translates in a shift in the radius, M − ω ∼ r41. This leads, after the emission, to the

geodesic

ṙ =
1

2
√
Nα′

r

(

r21
r2

± 1

)

. (7.4)

Its solutions are r2 = r21

(

e±x1/
√

Nα′ ∓ 1
)

, and one finds for timings the very same

pattern as in the LST case.

Inserting the outgoing solution of (7.4) in (6.1) one obtains ImS = π
√
Nω, from where

follows once more the behaviour (3.6). Thus, most probably, all metric which asymptotic

completion is LST will emit thermically.

As in the LST case one can check that using the mass density m = r40e
2φ0N5/2 and

entropy density s = r40e
2φ0N2 [27] the emission entropy in (3.6) turns to be directly related

with Hawking-Bekenstein entropy, e−β0ω = e∆SBH .

8. Remarks and implications

We have computed the decay rate for the NS5 and Little String Theory black holes. The

latter can be interpreted as the thermal limit of the former. The entire process of black

– 11 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
0

hole evaporation, except for the final period when the black hole is Planckian size, can be

summarized according to the following patterns: Starting from the NS5 system at a given

temperature we checked, in a semi-classical approximation, that the black hole emission

is non-thermal (4.5). The black hole contains many degrees of freedom couple with its

environment. At this point the system is thermodynamically irreversible, and the entropy

of the surrounding increases as the black hole emits. As the emission takes place the black

hole temperature increases while, both the mass and the emission rate, decreases becoming

the latter pure thermal at the Hagedorn temperature (3.6). The interference term vanishes

at this point and the black hole system is thermodynamically reversible and consists of

a single state. This single state radiates, while the hole temperature keeps completely

independent of its mass. Thus, as the LST black hole evaporates, its energy flux is exactly

constant.

Once this point is reached, one could think that we deal with a stable remnant with

zero entropy. That this is not the case can be inferred from the stringy correction to the

entropy as a function of the energy. This gives a thermodynamically unstable system [28]

which in turn implies that the probability of emission diverges. In order of having a gross

idea of the latter effect we use the area law relation but incorporating its first quantum

corrections

Sc =
Area

4
+ α log

(

Area

4

)

+
γ

Area
+ · · · . (8.1)

Taking into account the relations of the mass and energy densities, the black hole

emission (3.6) is replaced at leading order by

Γ ∼
(

Area1

Area0

)α

e∆SBH =
(

1 − ω

M

)α
e−β0ω . (8.2)

The expression above together with the fact that the value of α is negative –the system is

unstable– shows that the trend in (8.2) is that as the system evolves in time the emission

increases, i.e. without further considerations at play the system would fully evaporate

without leaving any relic behind it. This fact is clearly driven by the sign of α, which is

negative, and makes the distinction with results of [29], where the width decay vanishes.

Obviously, the above picture relies in a truncation of (8.1) and as one approaches Planck

scales one must consider that subleading contributions in (8.1) are enhanced and they wash

out any solid conclusion.

We have also found that for theories which their ultraviolet completion is LST, the

radiation is also that of a blackbody at a fixed temperature (2.2). This thermal effect

can be made present in the dual field theory as the violation of the baryon number [30].

Even if at high-energy CP symmetry violation is negligible is well known that at very

high-temperature is indeed unsuppressed [31] conforming our findings.

The emission model we have used is closely related with the eikonal approximations

and we checked that the same result can be obtained by using the Hamilton-Jacobi ap-

proach [32].

As a final remark, we have checked explicitly that the thermal behaviour found in (3.6)

is not related with the vanishing of the jet-queching parameter in the very same models [33].
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Even if appealing, the idea of non-interaction between the system and its surrounding seems

unconnected from the energy lost of a quark pair inside a quark-gluon plasma as can be

seen by computing the jet-quenching parameter as a function of κ, q̂(κ) = 0. A more

plausible reason for this behaviour is the absence of a Hawking-Page transition in these

systems. As we have shown in section 6 the system remains always in the confined phase.
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[26] R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories,

Phys. Rev. D 73 (2006) 086005 [hep-th/0602027].

[27] A.L. Cotrone, J.M. Pons and P. Talavera, Notes on a SQCD-like plasma dual and holographic

renormalization, JHEP 11 (2007) 034 [arXiv:0706.2766].

[28] D. Kutasov and D.A. Sahakyan, Comments on the thermodynamics of little string theory,

JHEP 02 (2001) 021 [hep-th/0012258].

[29] M. Arzano, A.J.M. Medved and E.C. Vagenas, Hawking radiation as tunneling through the

quantum horizon, JHEP 09 (2005) 037 [hep-th/0505266].

[30] J.D. Bekenstein, Nonexistence of baryon number for static black holes, Phys. Rev. D 5 (1972)

1239.

[31] M. Dine, O. Lechtenfeld, B. Sakita, W. Fischler and J. Polchinski, Baryon number violation

at high temperature in the standard model, Nucl. Phys. B 342 (1990) 381.

[32] K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys.

Rev. D 60 (1999) 024007 [gr-qc/9812028].

[33] G. Bertoldi, F. Bigazzi, A.L. Cotrone and J.D. Edelstein, Holography and unquenched

quark-gluon plasmas, Phys. Rev. D 76 (2007) 065007 [hep-th/0702225].

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C43%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CD13%2C2351
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C36%2C2419
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C36%2C2419
http://arxiv.org/abs/hep-th/0405160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA6%2C2353
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB703%2C537
http://arxiv.org/abs/hep-th/0401162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C673
http://jhep.sissa.it/stdsearch?paper=09%282007%29055
http://arxiv.org/abs/0707.1158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD40%2C2626
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3743
http://arxiv.org/abs/hep-th/9306069
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB310%2C291
http://arxiv.org/abs/hep-th/9309145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C99
http://arxiv.org/abs/hep-th/9601029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086005
http://arxiv.org/abs/hep-th/0602027
http://jhep.sissa.it/stdsearch?paper=11%282007%29034
http://arxiv.org/abs/0706.2766
http://jhep.sissa.it/stdsearch?paper=02%282001%29021
http://arxiv.org/abs/hep-th/0012258
http://jhep.sissa.it/stdsearch?paper=09%282005%29037
http://arxiv.org/abs/hep-th/0505266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD5%2C1239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD5%2C1239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB342%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C024007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C024007
http://arxiv.org/abs/gr-qc/9812028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C065007
http://arxiv.org/abs/hep-th/0702225

